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Historically the theory of quadratic forms was regarded as a topic in number theory. 
However, Witt's paper "Theorie der quadratischen Formen in beliebigen Korpern" of 
1937[15] opened up a new chapter in the theory: that of combining the number theoretic 
aspect with the algebraic development, by the creation of the famous Witt ring. 

Then triggered off by Cassel's paper "On the representation of rational functions as sums 
of squares" of 1964[4], Albrecht Pfister, about 1966, come up with his celebrated structure 
theorems, giving birth to a purely algebraic theory of quadratic forms. Special cases of 
arithmetical aspect of Pfister's theory are his beautiful results about sums of squares and 
Pfister forms. 

Our object here is to give a brief exposition of Pfister's work on sums of squares and 
related topics, one of the most beautiful and self contained set of results in any field (pun 
intended). 

So let K be a field. We make the following 

Definition 1. The smallest integers = s(K) for which the equation 
is solvable, is called the Stufe (often referred to as level) of K. If the equation 

has no solution, we put s = oo and call K formally real. 

In 1932, Van der Waerden had posed the problem of enquiring which numbers can occur 
as Stufe. For example 3 can never occur as Stufe. Indeed if 
then Multiplying by 1 + x2 gives 

Now otherwise Stufe K = 1. Hence (b) gives 

showing 
It may similarly be shown that no odd number can be the Stufe of any field, but can 6 or 

10 or 12 be the Stufe of a suitable field? We shall have to experiment with various fields 
and then make a conjecture. The rationals Q and the reals R, being formally real, are of no 
use, the complexes C provide a trivial example: — 1 = i2 giving s(C) = 1. So let us look 
at the imaginary quadratic fields. Indeed we have the following 
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Theorem 1. Let D > 0 be a square free integer; then the Stufe is 

If D < 0, then K is of course formally real. 

Proof: [12]. Writing D = a2 + b2 + c2+d2, a, b, c, d, e Z, we see that 
a2 + b2 + c2 + d2, giving s(K) < 4. Now s(K) = 1 if and only if J-i e K and this 
happens only in the case D = 1. If D £ 7 (mod 8), then D is a sum of three squares and 
so 0 = (y/—D)2 -\-a2 + b2 + c2, giving s(K) < 3. But we have already seen that s cannot 
be 3, hence s(K) = 2, the case s = 1 being fully cleared. 

Finally let D = 7 (mod 8). If s(K) were < 4, then it would be equal to 2, i.e. 

Here, without loss of generality, we may suppose that b\ ^ 0. Equating reals and 
imaginaries, we get the following two equations: 

These imply Thus D is a sum of 3 rational squares which 

is a contradiction since D = 1 (mod 8). Thus s(K) not be less than 4 as required. • 

Let us next look at all the finite fields. We have the following easy 

Theorem 2. Let Fq be the finite field ofq = pa elements; then 

Proof: First let p = 2. Then - 1 = 1 = l2 giving 
Next if p = 1(4), then (~^) = 1 i.e. —1 = x2 is solvable in Fp C /y» (for all a). So 

Let now 

Hence oy the pigeon hole principle, 
there exist such that But - 1 is not 
a square in Fp since p = 3(4). It follows that 

Now and here But 
so Fpo has Stufe 1 if 2|or. 

If even for then is solvable in 
which is false since 2 / a . Hence 

That more or less exhausts all the easy fields using elementary methods. Even allowing 
the Hasse-Minkowski theorem all those algebraic number fields K for which s(K) exists 
finite can be dealt with in a single go. The exact result is the following: 
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Theorem A. Let K = Q(a) be an algebraic numberfield with [K:Q]—nfinite. Thens(K) 
exists finite iff K is totally complex (i.e. all the zeros ofirr (a, Q) are non-real) and then 
s(K) < 4 i.e. equals 1,2 or 4, because we have seen that Stufe can not be 3 and in fact 

For a proof see [ 13], p 261. 
We see that experimentation is not easy and so it was all the more surprising, when Pfister 

proved the following beautiful 

Theorem 3. For any field K, the Stufe s(K), if finite, is always a power of 2. Conversely, 
every power of 2 is the Stufe of some field K. 

We shall give a proof of this result in the sequel. In showing that 3 cannot occur as 
Stufe, the transition from equation (a) to (b) (see before theorem 1) is the crucial step in the 
process. We have, more generally, the curious looking identity. 

(1) 

which tells its that a product of two sums of two squares is itself a sum of two squares. 
Known to the Greeks, (1) is equivalent to the statement. The norm of the product of two 
complex numbers Z\, Z2, is the product of their norms: 

for writing we see that 
and so (1) and (10 are the same. 

This identity (1) enables us to prove another curious result: 
For any field K, the set G2(K) = [a e K*\a = x2 + y2, x, y, e K) is a multiplicative 

group. 
For, the closure property is the identity (1) while if 

The following striking identity was already known to Euler in 1770 and he used it to 
prove Lagrange's theorem that every positive integer is a sum of four squares. 

where 
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The discovery of quaternions by William Hamilton, in 1843, brought out the real significance 
of the identity (2) in as much as (2) is simply the fact that the norm of a product of two 
quaternions is equal to the product of their norms. 

Almost immediately after Hamilton's discovery of the quaternions, Arthur Cayley, in 
1845 discovered the octonions (the Cayley numbers) which give rise to the incredible 
looking identity 

where 

Although the identity emerges most naturally from Caytey numbers, it was discovered 
nearly a quarter of a century earlier by C.F. Degan (1822) with minor sign differences. 

Degan stated (erroneously of course) that there is a like formula for 2" squares. For the 
case of 16 squares, he gave the literal parts of the 16 bilinear functions Z\, Z2,. • •, Z\ebat 
left most of the signs undetermined, saying that the only difficulty is the prolixity of the 
ambiguities of signs. 

Degan was also aware of the 2— and 4— variable Pfister forms X\ — aX\ and X\ + 
both of which satisfy identities similar to (1) and (2). 

As before, if we define 

and G8 similarly, then it follows from (2) and (3) respectively that G4 and G8 are groups 
under multiplication, so that we have the chain of inclusions 

A great many unsuccessful attempts followed Degan's discovery of (3), to extend formulae 
(1), (2) and (3) to a similar 16 term identity, and many workers, realizing the impossibility of 
such an extension, tried giving convincing arguments to prove the impossibility. Hamilton's 
and Cayley's discoveries had reduced the problem to the determination of the so-called 
normed algebras over the real numbers R; the four known ones being R (of dimension 1), 
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the complex numbers C (of dimension 2), the quaternions H (of dimension 4) and the 
octonions O (of dimension 8). It is an astonishing observation how the axioms of the 
ordered field R gradually drop off as we move up these higher dimensional hypercomplex 
systems: C is, no doubt a field, commutative and associative (under multiplication) and 
a division ring, but the order property is lost. H is only an associative division ring; thus 
commutativity, and order are both lost. Finally O is not even associative-it is merely a 
division ring; thus commutativity, associativity and order are all lost. 

The half century following the discovery of these quaternions and octonions then saw 
many attempts to find a 16-dimensional hypercomplex system over the reals and several 
erroneous affirmations were given. Finally in 1898, Hurwitz [6] gave a decisive solution to 
the problem about the dimensionality of all possible normed algebras over R and so also 
about the possible values of n for which there is an identity of the type (3) with n terms. 
More precisely we have the following. 

Theorem 4 (Hurwitz-1898). Let K be afield with char The only values of n for 
which there is an identity of the type 

where the Z* are bilinear functions of the X, and the Yj, coefficients in K are n = 1, 2, 4, 8. 

Actually Hurwitz proved this only over C but his proof generalizes to any field K with 
char K £ 2. We give here a proof given by Dickson in his beautiful expository paper [5] 
of 1919. A proof using normed algebras can be found in A.A. Albert's Studies in Modern 
Algebra [2]. 

Proof: (Dickson). The idea is to convert (4) into a system of matrix equations. The 
bilinearity condition on the Z* can be written as 
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and since this is true for all Y\,Y2,... ,Yn,'\t follows that 

(a) 

Since this is true for all Xj, we have 

Conversely, the existence of such a system implies that (4) holds with Zk bilinear in the X,-
and the Note also that if (2) is vacuous, and (1) can be trivially satisfied so we 
may suppose 

Now let The fi's are easily seen to satisfy 

Hence we have 

It follows that and since |B,-| / O w e must have n 
even. Hence 

Proposition 1. There is no identity of the type is odd. 

In future, therefore, we suppose n to be even. Now consider the following se 
matrices: 
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Here Bit takes n - 1 values viz. B\, B2 B„-\, while 2?,, 5,2 takes ("2 ) values viz. 

B\B2, B\ B3,... etc. So altogether there are elements in 
the set Q. Let Then we have 

Lemma 1. G is symmetric if r = 0 or 3 modulo 4, arcrf skew-symmetric if r = 1 or 2 
modulo 4. 

Proof: 

by (iii) of (b) to commute successively with 

Lemma 2. Lef M e Q. Then the set MQ = {MG|G e Q) is simply a permutation ofQ 
with each term prefixed with either + 1 or —I. 

Proof: The result is clear if the multiplier M is B\, since then the product will contain or 
lack B\ according as the multiplicand of Q lacks or contains B\ (use again (b)). 

If the multiplier is B2, we first replace B\B2 wherever it appears, by B2B\, 
and see that the former argument applies. 

After thus proving our statement when the multiplier is any B\, we see that it holds when 
the multiplier is any product of the 5's. • 

An Example: n = 4. 

Then 

Our aim is now the following. 

Proposition 2. At least half of the elements of are linearly independent. 

With this in view, we look for any linear relations that can exist amongst the elements 
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Definition: A relation or R = 0 for 
short, is called/rra/Mc/7?/eifit is not possible to expres 
represent two linear relations that hold between the subsets/? i and/?2of/?with/?ifl/?2 = 0, 
i.e. there are no matrices common to R\ and R2. 

We have the following. 

Lemma 3. An irreducible relation /? = 0 cannot involve both symmetric and skew-
symmetric matrices. 

Proof: Let M\ be the subset of all symmetric matrices in /? and M2 the set of all skew-
symmetric matrices in . Then . Hence 

It follows that which contradicts the 
irreducibility of /? = 0. • 

Now let R = 0 be any irreducible relation between the matrices of Q. By multiplying 
R by a suitable kG (k e R, G e Q) we get a new relation 7 = 0, one term of which is / 
and all the remaining terms are products of matrices of Q by real constants. For suppose 
(J.G (n € R,G € Q) is a term in /? which we wish should become / in the relation 7 = 0. 
One just multiplies /? = 0 by ± / z _ l G - 1 and notes that one of ± G - 1 e Q. 

For example if 4B2B} is one term of /?, then on multiplying /? = 0 by 

4we get what is required. 

This new relation 7 = 0 is also irreducible, for if 7 = 0 were to split as T\ = 0, T2 = 0, 
then since we have = R and so /? = 0 splits as A._1G_17i = 

which gives a contradiction. 
Hence we may suppose that 7 = 0 looks like 

(*) 

where by Lemma 3, each of the matrices etc. is symmetric since 
/ is symmetric. That is why no singleton B, nor any of the products B, Bj of two B's can 
be involved in (*) since B, and B,Bj are skew-symmetric by Lemma 1. 

Now multiply (*) throughout on the right by B, to obtain an irreducible relation which 
then involves only skew-symmetric matrices since one term (on the left side) is the skew-
symmetric matrix B,. But by Lemma is symmetric. So all the Cj are 0 if 
only i is distinct from i\i2i3. Since i may have any value < n — 1, we see that each c is 0 
unless n — 1 = 3 for then / cannot be chosen different from i\, i2, rj. 

Next we show that all the d's are 0 too; for multiply (*) by B,4 and it becomes 

But becomes 
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Here is symmetric, while is skew-symmetric (by Lemma 1). It follows that 
all the s are 0 too. 

The method used in proving c = 0 applies when the number r of factors in 
is = 3(4) and r < n — 1. Similarly the method used in proving d = 0 also applies when 

Hence if our relation exists, it has the form 

the right hand term being the only survivor. Now / is symmetric so 
symmetric i.e. n — 1 = 0 or 3(4), but n is even so n — 1 = 3(4) i.e. n = 0(4) 

We have thus proved the following. 

If an irreducible relation between the elements 1 
of does exist, then n = 0(4). 

Now square this relation to get 

Since we see that Hence we have the following. 

Lemma 4. If n = 2(4) then the 2" - 1 matrices of Q are linearly independent, while for 
n = 0(4), they are either linearly independent or are connected by the relations which arise 
from the relation through multiplication by the various elements of 

, but are connected by no further irreducible linear relations. 

Example: let n = 4. Then 

and these eight matrices are either linearly independent or are connected by the following 
four irreducible linear relations and no others: 

These express linearly in terms of /, B\, B2, By, so that these 
latter matrices are, in any case, linearly independent. 

Now consider all the irreducible linear relations that exist between the element of As 
we have seen, they are all of the type 

and no others. Now reduce the right side of this using (b). Then one of G or the reduced 
right side obviously contains fewer than half of the B's while the other contains more than 
half of the B's. 
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with a 1 in the one place above the main diagonal, — 1 in the corresponding place below, 
and O's elsewhere, form a basis for the subspace of all 6 x 6 skew-symmetric matrices and 
so this subspace has dimension 15. This proves (ii). 

(i) and (ii) above are contradictory. Hence no identity of type (4) can exist for n = 6. 
That at last completes the proof of Hurwitz's theorem. • 

Remark: The proof works for any field K of characteristic ^ 2. 

Although the impossibility of the identity (4) for n ^ 1, 2,4,8 has been proved, it was 
under the stringent restriction that the Z* are bilinear polynomials in the X, and the Yj. One 

Thus these irreducible linear relations merely serve to express the products containing 
more than half of the fi's in terms of those with less than half of the fl's. 

So in every case (i.e. irrespective of whether n = 0 or 2 (mod 4)) the 2n~2 matrices of 
Q, which are products of less than ^^-fl's, are linearly independent. Hence for all values 
of n (necessarily even) if there is to be an identity of the type (4), the 2"~2 matrices of Q 
consisting of the product of at most ^^ f i ' s are linearly independent. 

This completes the proof of Proposition 2. • 

We can now give a proof of our main result. 
The elements of Q are all n x n matrices and the maximum number of linearly independent 

n xn matrices is n2 since they form, over the reals, a vector space of dimension n2. Hence 
by the proposition we get 

z < n . 

This is satisfied if n < 8 but fails if n = 10. Now if it fails for n = m, then it fails for 
n = m + 1 for we have 

(since the relation fails for m) 

It follows that if an identity of the type (4) exists, then n < 8 (and n is even). Forn = 2,4, 8 
we already have the required type of identities. It remains to dispose off the case n = 6. 

Suppose an identity exists for n = 6. Then since 6 = 2(4), we see that 

the 25 matrices ofQ are linearly independent. (i) 

Of these 32 matrices, 16 are skew-symmetric by Lemma 1, viz. the ones that are products 
of 1,2 or 5 fl's. But 

between any 16 skew-symmetric 6 x 6 matrices .... 
i 0 0 

there exists a linear relation. 

This is because the 15 matrices 
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could look into the possibility of the existance of other values of n for which (4) holds, if 
we relax this bilinear condition and allow the Z* to be more general polynomials in the X; 
and the Yj. However, in 1966, Frank Adams [1] showed that when n is not 1, 2,4, 8, there 
are no identities of the type (4) even if the Z* are allowed to be any bi-skew, continuous 
functions of the Jf,- and the Yj (where a mapping / : Kr x Ks -* Kn is called bi-skew if 

It was thus totally unexpected when in 1965, Albrecht Pfister [10] proved the following 
remarkable. 

Theorem 5. Let K be afield and let n = 2m be a power of 2. Then there are identities. 

(5) 

where the are linear functions of the Yj with coefficients in 
with 

Conversely suppose n is not a power of 2. Then there is a field K such that there is 
no identity (5) with the . Here the are not even 
demanded to be linear in the Yj. 

We shall now give proofs of theorems 3 and 5. In the process we shall get other results 
which are interesting in their own right. 

The proof of the first part of theorem 5 requires no elaborate algebraic machinery and is, 
indeed, remarkably simple. We dispose of it first. 

Proof of the first part of theorem 5: We use induction on m. We know that (5) holds for 
(see (1), (2), (3)). Suppose it holds for so that 

Then (5) can be written as 
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or 

where By the induction hypothe
sis there exist two matrices say, corresponding to respectively 
such that 

and using block multiplication of matrices this equals 

say; we want to choose X so that A = B = 0 and 

and so also T being orthogonal. 
We now prove In. Write 

Since this is true for all we must have 

Try partitional matrix, where X will be determined by (iii). 

We have 
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To make A = 0 we have to have This automatically makes 
B = 0 (just check). Now it seems too much to expect C to be what we want. But we have 

This completes the proof of the first part of Theorem 5. • 

We now come to a result of Cassels [4], which, in a way, was the starting point of this 
whole business and which is an indispensible tool in our further developments. 

Cassels' Lemma (1964). Let f(X) e K(X) be a polynomial with coefficients in K. If 
f(X) is a sum ofn squares of elements of the field K(X), then it is a sum ofn squares of 
elements of the ring K[X]. 

Note: What is new in this enunciation is that the same number n of squares suffice in K[X\, 
without this condition, the result had been proved by Artin [3]. 

Proof: There are three trivial cases of the lemma which we dispose of first. 

then combining two squares at a time into one, f(X) reduces to a single square, i.e. 
we land up in case (i). 

(iii) —1 is a sum of n — 1 squares of elements in K. 

Say Then for any f(X), we have 

a sum ofn squares of elements of 

So now let us suppose none of these three cases holds and let 

Dropping the X from now on and clearing the denominators, this gives 
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has a solution (Z, Y\ Y„) with Z ^ 0 and we have to show that there exists a solution 
of (a) with Z e K(Z £ 0), i.e. with degree of Z (in X) = 0. Now since (a) has a solution 
with Z 7̂  0, so there is a solution, call it (f, i f i , . . . , %) , with f ^ 0 for which deg f is as 
small as possible: 

(b) 
We shall show that this degree is 0 i.e. that f € K, by showing that if not, then there exists 
a solution, say (f *, ^* , . . . , r?*) with f * ^ 0 and deg f * < deg £. 

So suppose deg f > 0. By the division a' orithm in K[X], we can write, for / = 
1,2,. . . . n , 

where either y7 = 0 or deg yj < deg f. i.e. 

(c) 

say. Note that not all the yj can be zero, otherwise f divides all the rjj so that (b) becomes 
contradiction, since the degree of £ was least possible. 

Now let 

Then visibly, all of We now claim 

(i) that is a solution of (a), 

This would then contradict the definition of f and so would prove the lemma. 

We prove (i) by brute force: we must show that that 
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Here the first terms from both sides cancel since ])T rjj = ft,2 and it remains to prove that 

Here not all the y, are zero (as already noted) and so £ yf is non-zero since otherwise by 
equating the coefficient of the highest power in X to 0, we find that 0 is a sum of at most n 
squares of elements of K, which is the third trivial case of the lemma. Thus f * ^ 0, which 
proves (ii). 

Finally J* = 1/f J2i yf giving ff* = £ / y2. Equating degrees, we get deg f+ deg 
£* = 2 max, (deg j/,-) < 2 deg £ since deg y, < deg f (for all /). Thus deg £* < deg f, 
which proves (iii). 

This completes the proof of Cassels' lemma. 

Remark: The solution does not just come out of the blue. It is the second 
point of intersection gofthequadric (a) with the line joining the points P = (^, r)\,..., r]n) 
(on the quadric) and (in space) in the n-dimensional projective space 
over the field K(X). The simplest way to get this point Q is as follows: a general point of 
the line PP' is 

6/(p being a parameter for various points, cp = 0 giving the point P. To get Q we substitute 
this general point in the quadric (a): 

Here the expression in square brackets just cancels out. 
To prove (ii) and (iii) we substitute for kj from (c) in £*. Then 
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and substituting this in the general point and multiplying by a suitable factor (allowed in a 
projective space) we get our point Q as required. 

We now deduce a few corollaries from this lemma. 

Corollary 1. Let char be a sum ofn squares 
of elements of be such that f(a\, ...,am) is 
defined (i.e. the dominator is not 0). Then f(a\,..., am) is a sum ofn squares in K. 

Remark: The point is that although f(X\,..., Xm) is defined at (a i am), it may well 
happen that the summands f2(X\,.... Xm) of the right hand side of f(X\,..., Xm) = 

may not be defined at (a\,... ,am), but still according to the corollary, 

f(a\,... ,am) is a sum of n squares in K. 

Proof: We use induction on m. For m — 1, we have 

Then Thus gh, which is in is a sum ofn squares in 
K(X) and so by Cassels' lemma, it is a sum of n squares in K[X]: 

Hence Now by hypothesis, 
is defined; i.e. h(a) ^ 0, so each fj(a)/h(a) is defined. 

Let now m > \. Let L = K(X\ Xm-\). Assume the result form — 1 variables and 
let g(X\ Xm)/h(X\ X,„) be a rational function which is a sum ofn squares in 
K(X\,..., Xm). Regard g/h as a rational function of X„, belonging to L(Xm). So by the 
casern = 1, weseethatg is a sum ofn squares 
in L = K(X\ Xm_i). So by the induction hypothesis 
is a sum of n squares in K. This completes the proof of the corollary. 

Corollary 2. Suppose n =2m. Let G„ be the set of all non-zero elements of K which are 
sums ofn squares in K. Then G„ is a group under multiplication. 

Proof: Let ap e Gn say, Then a - 1 = a / a 2 = 
and it remains to prove that a.p e Gn. Consider the identity 

which exists since In this let 
Then the left side is well defined and equal to a.p and so by Corollary 1, the right side is a 
sum ofn squares of elements of K, i.e. a.p € Gn as required. • 

We see that it is the identity (5) that does the trick. 
We can now prove the first part of Theorem 3: s(K) is always a power of 2. 
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Proof of the first part of Theorem 3: Let 

(*) 

Then 
Here A, B are both non-zero, otherwise s(K) < s. Also A, B, both e 

Gn (by adding a suitable number of 02's to B if necessary). Then A + B = 0soA = —B 
i.e. - 1 = B/A e Gn since Gn is a group i.e. - 1 = c\ + • • • + c\ giving s{K) < n. 
Comparing with (*), we get s(K) = n = 2m. 

To prove the remaining parts of Theorems 3 and 5 we need to deduce some more 
corollaries from Cassels' lemma; see [4]. 

Corollary 3. Let char K ^ 2. A necessary and sufficient condition for X2 + d e K[X] to 
be a sum ofn squares in K(X) (and so in K[X] by Cassels' lemma) is that either 

(i) — 1 is a sum ofn — 1 squares in K or 
(ii) d is a sum ofn — l squares in K. 

Proof: If then for any polynomial f(X) e K[X], we have 

In particular X2 + d is a sum ofn squares. 
If d is a sum of n — 1 squares then visibly X2 + d is a sum of n squares in K[X]. 
For the converse, suppose X2 + d is a sum of /i squares in K[X]. If (i) holds, well and 

good; otherwise let X2 + d = p2(X) H h p2{X) say. Here we may suppose the Pj(X) 
to be linear poynomials in X for if not, then equating to 0 the coefficient of the highest 
power of X gives (i). Then 

(*) 

Now one of the equations C = ±(a„C + bn) is always solvable in K. For if a„ ^ 1 then 
C = +(anC + bn) is solvable, while if an = 1 then C = —(anC + bn) is solvable since 
char K ^ 2. Now put X = C in (*): 

Cancelling C2 with (anC+bn)
2 we see that d is a sum of n - 1 squares in A\ This completes 

the proof. • 

Corollary 4. Lef R be the field of real numbers. T h e n 2 is not a sum ofn - 1 
squares of elements in 
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Proof: We use induction on n. For n = 1, the result is trivial. So suppose the result is 
true for n - \. Let K = R ( X i , . . . , X„_i), X„ = X and d = X2 + • • • + X2

n_v If 
is a sum of n — 1 squares in AT(.Y) = R ( X i , . . . , Xn), then by Corollary 3, 

is a sum of n — 2 squares in K, since —1 is clearly not a sum of 
n — 2 squares in AT-indeed not a sum of squares at all in AT, which is formally real. This 
contradicts the induction hypothesis and completes the proof of Corollary 4. • 

We are now in a position to complete the proofs of the remaining parts of Theorems 3 
and 5. 

Every power of 2 is the Stufe of some field K. 

Proof: Let/i = 2m and let K — R(X\,..., Xn+\, Y) where X\,..., Xn+\ are independent 
transcendentals over R and Y satisfies the equation 

( i ) 

We claim that s(K) = n = 2m. In any case by (i), s(K) < n + 1 and so is at most n since 
n + 1 cannot be a power of 2 whereas s(K) is (except in the trivial case n = 1 i.e. m = 0). 

If s(K) < n then there exist t\,..., t„ e K, not all zero such that 

Let L = R ( X | , . . . , Xn+\) so that K = L(Y). By (i), Y is algebraic over L of degree 
2 and so each element of AT is a linear polynomial in Y with coefficients from L. Write 
tj = aj + Ybj, Qj, bj e L. Then by (ii) we see that 

and 

Here not all the aj are zero, otherwise £ b1- = 0 and so each bj = 0 since the bj € L = 
R is formally real. Then each tj would be zero which is not true. Similarly 
not all the bj are zero. Hence 

i.e. is a sum of n squares in L which contradicts Corollary 4. Thus 
is nor less than n and so equals n. This completes the proof. 

Remark: The proof also works for 

Finally we prove the remaining part of Theorem 5. 

Suppose n is not a power of 2. Then there is afield K such that there is no identity 
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Proof: Let 2 m _ 1 < n < 2m. Let K be a field having Stufe 2m = v, say. Then 
a2 + --- + a2+a2

+x + ---+al + l = 0. Let A = a2 + ->+a2
tB = a2

+l +•• - + a2 + l; 
hence A, Z? e G„ and if an identity of the above type exists, then Gn is a group (see the 
proof of Corollary 2). So - 1 = fl/A e G„, i.e. - 1 = C\ + • •« + C\ (Cj € * ) hence 
s(K) < n < v. But AT was chosen to have Stufe v. This gives a contradiction and so 
completes the proof. • 

Remark 1. In our examples of fields with high Stufe both the fields R(X\,..., Xn+\, Y) 
and Q(Xi , . . . , Xn+\, Y) are of high transcendence degree over R or Q as the case may be. 
We have the following 

Problem: Does high Stufe always imply high degree of transcendence? (over R or Q). 

Let us now go back to the identity (4): 

where the Z* are bilinear functions of the X; and the Yj with coefficients in the field K. 
There are three obvious ways of generalizing this identity (one of which we have already 

looked at in theorem 5). They are 

a) Allow the to be the rational functions of the and the 
Y\,..., Y„). Then, as we have seen in theorem 5, such identities can be found for 
each power n = 2m (m = 0, 1,...) of 2 and for no other value of n. 

b) Consider the (r, s, n) identity 

(6) 

with Z/c bilinear in the X, and the Yj, and determine, for given r, s the least value of n for 
which (6) holds. We could, alternatively look for the maximum value of r, for given s and 
n, for which (6) holds. 

For general values of r, s, n, little is known about (6). However, for .s = n, Hurwitz and 
Radon gave a solution of (6) in 1922-3, for the field R of real numbers. Before giving the 
exact statement of the Hurwitz-Radon theorem we make the following 

Definition 2. We say the triple (r, s, n) is admissible over K if (6) holds. 

Thus (r, s, rs) is trivially admissible over any field K; so that what we want is the most 
economical n for which (r, s, n) is admissible for a given pair r, s of integers. In view of 
this we have the 

Definition 3. Wedenoteby r*s (or rather r£s) the leasts for which (r, s, n) is admissible/^. 

We have the trivial bounds. 

It is not easy to determine r*s, even for small values or r, s. 
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Alternatively, as already said above, we could ask, for given s, n the maximum value of 
r for which (r, s, n) is admissible/^. This is the approach adopted by Hurtwitz and Radon 
in their treatment of (6) for the field R of real numbers. Simultaneously, Hurwitz solved 
(6), in this special case, for the field C of complex numbers, published posthumously in 
1923. Various authors have since dealt with other fields. 

As illustrations of definitions 2 and 3, we have the following: 

Examples: 

(i) (n,n,n) is admissible over R, indeed over any field K, char iff n = 
1, 2,4, 8. Thus is Hurwitz's theorem (Theorem 4). 

(ii) (1, n, n), and indeed (r, s, rs), is admissible for all n, r, s over any field K. 
(iii) If char/f = 2, then r*Ks = 1 for all r, s for then a2 + b2 = (a + b)2. 
(iv) 8 * 8 = 8 for max(8, 8) < 8 * 8 < 8. Similarly 4 * 4 = 4 and 2 * 2 = 2. 
(v) The problem: Before Hurwitz, studies about the (r, s, n)-identites (6) 

were exclusively restricted to the polynomial ring Z[X\ Xr, Y\,..., Ys] over 
Z. One then speaks of the (r, s, n)z-identities. It has recently been confirmed that 
16 *z 16 = 32, thereby completing the solution of the so-called 16-square problem 
in the integer coefficient (case see [16]). However, the integer v = 16 *R 16 is not 
known to date. Various methods developed by K.Y. Lam and J. Adem narrow down 
the range of v to 23 < v < 32. The values 23, 24 were subsequently ruled out by 
Lam and Yuzvinski. By going more deeply into the geometry of sums of square 
formulae and using sophisticated algebraic topology, it has now been established 
by Lam and Yiu that 29 < v < 32. 

It is trivial to see that v < 32; indeed 

which is a sum of 32 squares, using the 8-square identity four times. 

(vi) Amongst small values of r, s, n, even (10,11, 25) is not known to be admissible or 
otherwise. 

Definition 4. For any positive integer n, define the so-called Radon junction p(n) as 
follows: 

Write n = 2m • u(u odd); then 

We now have the following 

Equivalently write m 
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Theorem The triple (r,n,n) is admissible over the 
field Ojtreat numbers (Indeed over any jteld K, char K £ 2) iff r < pin). 

For n proof see 
(c) Instead of a "product formula" (4) for llir form X\ \ f X2, look for such a formula 
for more general quadratic forms q(X\. , X„), i.e. determine other quadratic forms 

if any, for which 

(7) 

whereExamples! then we have the curious identity (cf. 
identity (I)) 

(ii) Tn 4 variables, we have the striking identity (cf, identity(2)) 

Pfistef has given a complete solution of (c). He shows that for every power ;i = 2'" of 2. 
there is this form in n variables generalizing the forms 
by an obvious induction, which satisfies a product identity These are the so called Pfister 
forms, further there are no other forms that satisfy a product formula (7). For a proof of 
these results see 

In the identity (5), we have proved that the Zi may he chosen linear functions of the Yj 
with coefficients in 

and 8, these fy are linear in the .V, as well. It is natural to enquire how 
(unctions of the theorem 4. they can not all be taken 

linear tn tbe Vv nor imleevl polynomials, by Frank Adams tftewrem so that some of them 
at least have to bave a denominator, but can vvc make at least some of them linear forms in 

i ei «v first >see what we can do with the first term T\ and prove tire fallowing 
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We first prove: Let . Then there exists an 
n x n matrix S with first row such that 

Proof: First let c = 0. If all the we take S to be the zero matrix. 
So suppose, say, Let R be the row vector and take 

which has first row R as required. Further 

since Similarly S'S = 0 and the proof is complete. So we 
may now suppose that and we proceed by induction on m. 

Write 

Let 
sofl cannot be both zero; say, without loss of generality, that By the induction 
hypothesis, there exist square matrices S\, S2 of size 2m_1 such that 

Furthermore the first row of and that of Now 
let 

This has first row equal to R as required and an easy matrix computation gives SS = S S = 
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Then there exist matrices such that 
and 

Then 

This equation says that if (Z\,..., Z„) is the first row of W, then 
B u t s i n c e . w e h a v e 

Theorem 6 enables us to give another proof of the important group property of the set. 
power of 2 (see corollary 2 

after cassels' lemma). For, theorem 6 implies closure of G„ under multiplication while as 
before a - 1 e Gn whenever a e Gn. 

Going back to our enquiry about how simple we can take the Z* as functions of the Xi, 
we now state the following striking result of Shapiro: 

Theorem 7 (Shapiro-1978). Letn =2m and let K be any field. In the n-square identity (5) 

with Zk linear in the Yj with coefficient in , the first r terms Z\,..., Zr of 
the right side of(5) can also be taken linear in the X, iffr < p(n), the Radon function! 

For a proof of this result, see [13], page 183. 
Incidentally, we note that in (*) above we can easily arrange a formula where 8 of the 

Zk are bilinear (when n > 8). To do this start with the known (8, 8, 8) bilinear identity 
and apply the "doubling" process given in Pfister's theorem 5. Indeed write the 8-square 
identity twice over, once for the variables and once 
for . Thus 
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(simply read off the identity Then 

by Pfister's Theorem 5. We see that are bilinear in the X, and the Yj 
as claimed. The process can be repeated for 32, 6 4 , . . . , variables; the 8 bilinear terms 
will persist. 

But of course even for n = 16, Theorem 7 is stronger than the above method as it gives 
us nine fully bilinear terms. 

This problem was posed by Baeza and solved by Shapiro in a letter to Baeza in 1976. 
Pfister has other very interesting results about Hilbert's 17th problem in the function 

fields R (X, Y) and more generally in We refer our readers again to 
[13], [9]. 

References 

[I] J.F. Adams, Vector fields on Sphere, Annals of Maths 75 (1962), 603-632. 
[2] A.A. Albert (editor). Studies in Modem Algebra, vol. 2, MAA Studies in Maths (1963). 
[3] E. Artin, Uberdie Zerlegung definiter Funktionen in Quadrate, Hamb. Abh. 5 (1927), 100-115. 
[4] J.W.S. Cassels, On the representation of rational functions as sums of squares. Acta Arith. 9 

(1964), 79-82. 
[5] L.E. Dickson, On quaternions and their generalizations and the history of the 8-square theorem, 

Annals ofMaths. 20 (1919), 155-171. 
[6] Adolf Hurwilz, Uber der Komposition der Quadratischen Formen von beliebig vielen Variabeln, 

Nachrichten von der Koniglichen Gessellschaft der Wissenschaften in Gottingen (1898), 
309-316; = Math, werke, II 565-571. 

[7] A. Pfister, Zur Darstellung von-1 also Summe von Quadraten in einem Korper, JLMS, 40 (1965), 
159-165. 

[8] A. Pfister, Zur Darstellung definiter Funktionen als Summe Von Quadraten, Inventiones Math. 
4(1967),224-236. 

[9] A. Pfister, Hilbert's 17th problem and related problem on definite forms, Proc. of Symposia in 
Pure Maths. 28 (1976), 483^89. 

(10) A. Pfister, Multiplicative quadratische Formen, Arch. Math. 16 (1965), 363-370. 
[II] A. Pfister, Quadratrische Fromen in beliebigen Korpem, Inventiones Maths. 1 (1966), 116-132. 

and 



Pfister's Work on Sums of Squares 349 

[12] A.R. Raj wade, A note on the Stufe of quadratic fields. Indian J. Pure andApp. Maths. 6 (1975), 
725-6. 

[13] A.R. Raj wade. Squares, London Math Soc. Lecture note series no. 171, (1993). i 
[14] J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem Univ. Hamburg 1 (1922), 

1-14. 
[15] E. Witt, Theorie der quadratischen Formen in beliebigen Korpem, J, reine angew. Math. 17 6 

(1937), 31-34. 
[ 16] Paul Yiu, On the product of 2 sums of 16 squares as a sum of squares on integral bilinear forms. 

Quart. J. Maths. (2) 41 (1990), 463-500. 

Centre for Advanced Study in Mathematics 
Panjab University 
Sector 14 
Chandigarh 160 014 




